This course was created with the
course builder. Create your online course today.
Start now
Create your course
with
Autoplay
Autocomplete
Previous Lesson
Complete and Continue
Project Based Text Mining in Python
Introduction
Introduction (1:30)
Meet the Instructor (0:51)
Course Outline (3:32)
Starter Code (5:17)
Resources
Text Representation
Theoretical Concepts of Text Representation (5:30)
Structuring One Document Corpus (3:00)
Structuring a Multiple Document Corpus (1:14)
Setting Parameters (3:56)
Using TF-IDF Representation (0:40)
Reading Data from a Labeled Dataset (3:25)
Using Textual Dataset from UCI Respository (2:28)
Resources
Document Classification (Categorization)
Machine Learning Overview (2:38)
K-Nearest Neighbors Classifier (2:35)
Naive Bayes Classifier (3:18)
Decision Tree Classifier (2:07)
Linear Classifier (2:16)
Concluding Remarks on Classifiers (2:32)
Classifiers Implementation with Default Settings (13:40)
Classifiers with Different Parameter Settings (7:36)
Classification with a UCI Repository Dataset (7:32)
Resources
Document Clustering (Grouping)
Introduction to Clustering (5:09)
K-means Clustering (2:47)
Implementing Partitional Clustering (6:37)
Agglomerative Clustering with Default Settings (2:25)
Agglomerative Clustering with Parameters (2:34)
Clustering UCI Repository Dataset (3:27)
Calculating Suitable Value of K (4:10)
Plotting Squared Error for Clusters (2:12)
Resources
Validation and Evaluation
Cross Validation (2:08)
Validation (4:48)
K-Fold Cross Validation (4:17)
Leave One Out Validation (3:35)
Classifiers Evaluation (4:30)
Predictive Accuracy of KNN using KFold (5:04)
Precision, Recall and F1-measure (8:46)
Confusion Matrix (3:25)
Putting it all Together (6:13)
Clustering Evaluation Techniques (4:02)
Implementing Clustering Evaluation (2:47)
Resources
Pre-processing
Text Normalization (4:08)
Lowercase, Whitespaces, Punctuations (4:00)
Removing Stopwords (3:16)
Stemming and Lemmatization (8:53)
Regular Expressions (6:39)
Applying Regular Expressions (2:54)
Parts-of-speech Tagging (4:24)
Data Acquisition (3:06)
Text Segmentation and Tokenization (3:53)
Resources
Topic Modeling
Topic Modeling Introduction (6:55)
Topic Modeling Plate Notation (6:35)
Working of Topic Models (Latent Dirichlet Allocation) (7:06)
Implementation of LDA (11:12)
Practical with Topic Modeling on UCI repository (10:29)
Impact of Hyper-parameters (3:26)
Implementing LDA with Different Hyper-parameters (8:51)
Online LDA with UCI Repository Dataset (6:45)
LDA Evaluation (1:48)
Perplexity (6:57)
Resources
Sentiment Analysis
Subjective vs Objective Analysis (6:47)
Sentiment Analysis Techniques (3:58)
Levels of Analysis and Challenges (5:22)
Sentiment Classification (5:36)
WordNet Dictionary (2:58)
WordNet Based Sentiment Analysis (10:01)
SentiWordNet Based Sentiment Analysis (10:23)
Resources
Project
Project 1: Query based Classification, Clustering and Sentiment Analysis (9:02)
Project 2: Topic Modeling and Sentiment Analysis (8:36)
Ideas for a Course Project (1:31)
Resources
Text Segmentation and Tokenization
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock